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A conceptual model for window manufacturing which is capable of ventilation, regulating 
sunlight, and reducing a traffic and environment noise has been presented in previous studies. 
This window combines two basic components: a soundproofing ventilation unit (SVU) and a 
lighting unit. Due to the fact that the ventilation unit must have a large volume to attenuate 
low-frequency noise, many resonance of higher-order mode wave will be generated inside the 
unit. To minimize the higher-order mode in order to have a great soundproofing effect, an 
elliptical cavity is take into consideration in this paper. At first, by using the Mathieu function, 
the general expression of the output pressure to the given input uniform velocity is obtained 
for a whole ventilation unit. Next, based on the calculation results, the cause and mechanism 
of resonance frequencies inside an element are discussed in detail. 
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1. INTRODUCTION 
Sealing up type's doors and windows are 
widely used in the current houses to inter-
cept an inside outside. Needless to say, some 
home equipment such as air conditioners are 
necessary to keep a comfortable indoor’s 
temperature while such doors and windows 
are closed. In previous study, we have been 
presented a conceptual model for window 
manufacturing which is capable of ventilat-
ing, regulating sunlight and reducing traffic 
noise for the developing tropical countries 
[1]. The ventilation unit is constructed using 
rectangular cavity with input and output 
openings at both ends. Due to the fact that 
the ventilation unit must have a large vol-
ume to attenuate low-frequency noise, many 
resonance of higher-order mode wave will 
be generated inside the unit. To minimize 
the higher-order mode in order to have a 
great soundproofing effect, an elliptical cav-
ity is take into consideration in this paper.  

The ventilation unit is model as a pis-
ton-driven elliptical rigid tube with no losses. 
By using the Mathieu function the general 
expression of the output pressure to the giv-
en input uniform velocity is obtained for a 
whole ventilation unit. Based on the calcula-
tion results, the cause and mechanism of 
resonance frequencies inside an element are 
discussed in detail. 
 
2. METHOD OF ANALYSIS 
A new type of window combines two basic 
components: ventilation and lighting(SVU) 
as shown in Fig. 1.  The lighting unit can 
be constructed using one or two glass layers 
which are mounted between two ventilation 
components with input and output openings. 
The ventilation unit can be constructed using 
wood or metals, it also serves as an import 
function in reducing noise, which we must 
design using acoustics technology. Note that 
sound propagating through this element is a 



combination of two kinds of waves: standing 
and higher-order mode waves. Thus, we 
need to choose a shape that minimizes the 
higher-order mode wave component as 
much as possible. 
 Here, we present the theoretical calculation 
of the sound pressure inside the elliptical 
unit including the effects of higher-order 
mode wave for a simple case where no 
acoustic material is used. Model of the unit 

is shown in Fig. 2. A section area S
w
 and 

length L  of elliptical cavity that has an 
input and output at both side, the sectional 

area of them are S
0
 and S

L
, respectively.  

The complete solution of wave equation 
when expressed in elliptical coordinates is 
[2]. 
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where ( , )mce sη 1( , )mse sη+  and ( , )mCe sξ

1( , )mSe sξ+  are the Mathieu function and 

modified Mathieu function of mth-order, 
respectively.  Other symbols are constants. 

Let 
  Vx

= − ∂φ / ∂x  , 
  
V

y
= − ∂φ / ∂y  and 

  Vz
= − ∂φ / ∂z  be the velocity components in 

the x , y  and z  directions, respectively. 

The boundary conditions are 
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Based on the boundary conditions as given 

above, we will find the velocity potential φ . 

At first, from boundary condition {2} 
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∴    0 0 exp(2 )B A Lµ=         (7) 

Substituting Eq. (7) into Eq. (1), we have 
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Equation (10) is satisfied by requiring that s 
have those values that make 
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Let the positive parametric roots of Eq. (11) 

and Eq. (12) are designated as sm,i  and 

sm,i , respectively. Then Eq. (8) becomes 
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From boundary condition {1}, we have 
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By multiplying both side of Eq. (14) by

, ,( , ) ( , )m m i m m iCe s ce sξ η (cosh 2 cos2 )ξ η−  

and integrating with respect to η  from 0 to 

2π , and with respect to ξ  from 0 to wξ . 

The constant mC  is determined as follows 
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By multiplying both side of Eq. (14) by

1 1,( , )m m iSe sξ+ + 1 1,( , )m m ise sη+ +

(cosh 2 cos2 )ξ η−  and integrating with re-

spect to η  from 0 to 2π , and with respect 



to ξ  from 0 to wξ . The constant 1,m iS +  is 

determined as follows 
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Substituting Eq.(15) and Eq.(18) in Eq.(13), 
the velocity potential can be find as 
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Therefore, the sound pressure of input be-
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Similarly, using the relation 

  Pout
= jkρcφ(ξ,η, L)  the sound pressure at 

the output piston can be determined.   
The average sound pressure acting on the 
output can be expressed as 
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where k is wave-number, 
  Zw

= ρc / S
w
, 0U  

and LU  are the volume velocity of the input 
and output section, other symbols are defined 
by 
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3. RESULTS AND DISCUSSIONS 
Hereafter, in order to obtain a great sound-
proofing effect, we will investigate the 
characteristic of the higher order mode that 
propagated inside the unit.  Resonance of 
the higher order mode wave will occur when 
the denominator of Eq. (23) become zero, 
namely at the frequencies of 
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The constants ,m iλ  and 1,m iλ + corresponding 

to eccentricity of the elliptical ventilation 
unit are given in [3]. Generation mechanism 
of the higher mode can be understood ac-
cording to the calculation example of even 
and odd modes within 4kHz shown in Fig.3 
in the case of elliptical having a eccentricity 
of 0.74,L = 12cm and the major axis of 
7.8cm. Fig.4 shows the experimental result. 
Agreement observed between the measure-
ment and our predicted resonance frequen-
cies is acceptable. Note that, the symbol C in 
Fig. 4 related to the Insert-Loss, it be obtain 

by C = U0 / Pout  while UL=0. 

 
4. CONCLUSIONS 
Characteristic of sound propagation in an 
elliptical soundproofing unit having an input 
and output has been presented by solving the 
wave equation considering the higher-order 
mode effect. To prove the theory, experi-
ments were carried out and agreement is 
obtained. Eq.(23) enable account the inser-
tion-loss or the selection of size and place-
ment of input and output openings in such a 
way that would minimize the effect of high-
er-order mode waves. 
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Figure1. Basic structure of the windows 

 
 
 
 
 
 
 
 
 



 

Figure2. Model of calculation 

 

 

Figure3. Computed result based on Eq.(6) 

 

 
 
 
 
 
 
 
 
 
 
 
 

Figure4. Experimental result 
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